- 6a. Write 4 equations, for incomplete combustion (to  $\underline{CO}+H_2O$ ) and complete combustion ( $\overline{CO}_2+H_2O$ ) for butane & butene.
- 6b. 43.8 g of butane produces \_\_\_\_ g of CO with incomplete combustion, and \_\_\_ g of CO<sub>2</sub> with complete combustion; 43.8 lb of butene produces \_\_\_ lb of CO with incomplete combustion, and \_\_\_ lb of CO<sub>2</sub> with complete combustion.
- 7. What is the name, formula, and molar mass of the alkanes with 1-8 carbons? the 7 smallest alkenes and alkynes (how many C's do they have) with only one C=C or triple bond?
- 8a. Draw isomers for alkanes with 1-6 carbons & (optional) 7-8. The number of isomers for CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>8</sub> is only 1; C<sub>4</sub>H<sub>10</sub> has 2 isomers, and C<sub>5</sub>H<sub>12</sub> has 3; C<sub>6</sub>H<sub>14</sub> has 5 isomers, with table-columns (2345678) giving hints for what they are (1 with longest chain of 6 Cs, 2 where longest chain is 5 Cs, and 2 with longest chain of 4 Cs); if you want a challenge, C<sub>7</sub>H<sub>16</sub> has 9 isomers (1, 2, 5, and 1 for chains with lengths of 7, 6, 5, and 4); C<sub>8</sub>H<sub>18</sub> has 18 isomers (1, 3, 7, 6, 1 for chains with longest lengths of 8, 7, 6, 5, and 4 carbons), http://www.kentchemistry.com/links/organic/isomersofalkanes.htm

| • | alkanes                        | #  | longest chain | 2 | 3 | 4 | 5 | 6   | 7 | 8    |
|---|--------------------------------|----|---------------|---|---|---|---|-----|---|------|
|   | C <sub>3</sub> H <sub>8</sub>  | 1  | 3             | 0 | 1 |   |   | -   | - | -    |
|   | C4H10                          | 2  |               | 0 | 1 | ı |   | - 1 | - |      |
|   | C <sub>5</sub> H <sub>12</sub> | 3  |               | 0 | 0 | 2 | 1 |     | - | •    |
|   | C <sub>6</sub> H <sub>14</sub> | 5  |               | 0 | 0 | 2 | 2 | 1   | - | -    |
|   | C <sub>7</sub> H <sub>16</sub> | 9  | V V           | 0 | 0 | 1 | 5 | 2   | 1 | 1.27 |
|   | C <sub>8</sub> H <sub>18</sub> | 18 |               | 0 | 0 | 1 | 6 | 7   | 3 | ì    |

**8b.** Draw isomers for alkenes with 2-5 carbons & (optional) 6-7.  $C_2H_4$  and  $C_3H_6$  have 1 isomer,  $C_4H_8$  has 3;  $C_5H_{10}$  has 5 (2 and 3 for C-chains with lengths of 5 and 4). With cyclo-isomers,  $C_3H_6$  and  $C_4H_8$  and  $C_5H_{10}$  have 1,2, and 4 more isomers, respectively.

|   | alkenes                        | #  | cyclo | 2 | 3 | 4  | 5     | 6   | 7 |  |
|---|--------------------------------|----|-------|---|---|----|-------|-----|---|--|
| • | C <sub>3</sub> H <sub>6</sub>  | 1  | +1    | 0 | 1 | -  | •     |     |   |  |
|   | C <sub>4</sub> H <sub>8</sub>  | 3  | +2    | 0 | 1 | 2  | -     | -   | - |  |
|   | C5H10                          | 5  | +4    | 0 | 0 | 03 | 2     | -   | - |  |
|   | C <sub>6</sub> H <sub>12</sub> | 13 | +7    | 0 | 0 | 12 | 3.4   | - 3 | • |  |
|   | C7H16                          | 27 | +11   | 0 | 0 | 1  | 12225 | 5.6 | 3 |  |

Chlorine: A chlorine atom has 7 valence electrons, so it is a neutral free radical (because with an odd number it MUST have an unpaired electron) without an octet, and it's very reactive, as in its reaction that begins the ozone-depleting reaction cycle. / A chlorine molecule, Cl<sub>2</sub>, is neutral, has two octets, no unpaired electrons (has unshared non-bonding els); is stable by itself but can be split-by visible light, often reacts with other chemicals. / A chloride ion has charge of -1, and 8 valence electrons (octet); usually it's chemically stable, unreactive with other chemicals.

In the Periodic Table, notice that Cl has two numbers: 17 (its atomic number) shows that every Cl has 17 protons; 35.45 (its molar mass) shows that 1 mole of "natural Cl" is 35.45 grams.

Chlorine has two main isotopes: 76% is <sup>35</sup>Cl (34.97 g/mole) with 18 neutrons, 24% is <sup>37</sup>Cl (36.97 g/mole) with 20 neutrons; a weighted average of this naturally occurring mixture of isotopes is 35.45 g/mol. Using math intuition for a weighted average, does it make sense that 35.45 is closer to 35 than 37?

There is no Cl-isotope with molar mass = 35.45, but 1 mole of "naturally occurring" Cl atoms will have mass of 35.45 g.

This skill may be useful elsewhere, but for 108-exams you won't need to calculate a weighted average: .76 (34.97) + .24 (36.97) = 35.45

to calculate a weighted average: .76 (34.97) + .24 (36.97) = 35.45

• answers for assigned problems in CiC, p 146-7: 40a (1 3 2 3), 40b (2), 40c (30); 41c (6 vs 8); 45 ([73 mt CH<sub>4</sub>][12 mt C / 16 CH<sub>4</sub>] = 55 mt C); and online - 1b (.43g NaHCO<sub>3</sub> × .18g CO<sub>2</sub>), 3e (1600g, 1875 mL)

## ANSWERS for Problems — 4,7,6a-6b, 5a-5b-5c:

- 4. 64 g (1/32) = 2 mole of  $O_2$ , 64 g (1/2) = 32 mole of  $H_2$ . diatomics: Hydrogen ( $H_2$ ), Air ( $N_2$   $O_2$ ), Halogens ( $F_2$   $Cl_2$   $Br_2$   $I_2$ ) 5-6 are below.
- 7. mother eats peanut butter (methane ethane propane butane), pentane hexane heptane octane; the number of C-and-H is  $C_nH_{2n+2}$  so it's  $CH_4$   $C_2H_6$   $C_3H_8$   $C_4H_{10}$   $C_5H_{12}$   $C_6H_{14}$   $C_7H_{16}$   $C_8H_{18}$ ; molar masses: 16 30 44 58 72 86 100 114

alkenes: names are like alkanes but with "ane" replaced by "ene": methene ethene propene butene pentene...; if one C=C it loses 2 Hs; to see why, draw an alkane, then convert one C-C into C=C and (oops) two C's now have 5 bonds, so (because C wants 4 bonds) you must remove one H from each C, thus the loss of 2 H's; now convert an alkane into a cycloalkane, and you'll also see a loss of 2 H; for each, H's go from 2n+2 to 2n, and with  $C_nH_{2n}$  it's  $C_2H_4$   $C_3H_6$   $C_4H_8$   $C_5H_{10}$   $C_6H_{12}$   $C_7H_{14}$   $C_8H_{16}$  and molar masses are 28 42 56 70 84 98 112 names: methene ethene propene butene pentene hexene ...

alkynes: ethyne propyne etc; formula is  $C_nH_{2n-2}$  (losing two more Hs; why?) -  $C_2H_2$   $C_3H_4$   $C_4H_6$   $C_5H_8$   $C_6H_{10}$   $C_7H_{12}$   $C_8H_{14}$  molar masses: 26 40 54 68 82 96 110

<u>6a</u>. butane incomplete:  $2 C_4H_{10} + 9 O_2 \rightarrow 8 CO + 10 H_2O$ butane complete:  $2 C_4H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O$ butene incomplete:  $2 C_4H_8 + 8 O_2 \rightarrow 8 CO_2 + 8 H_2O$ butene complete:  $2 C_4H_8 + 12 O_2 \rightarrow 8 CO_2 + 8 H_2O$ 

note: Cutting coefficient-#s in half is ok if they represent moles (... + 4.5 mol  $O_2$  ...) not molecules. Compared with incomplete combustion for 1 mole of  $C_4H_{10}$  (or  $C_4H_8$ ), why is 2 more moles  $O_2$  required for complete combustion? Why is 1 mole less  $H_2O$  produced per mole of butene, compared with butane? Do these differences (a. 2 more moles  $O_2$ , b. 1 less mole  $H_2$ ) change if the hydrocarbon changes from  $C_4$  to  $C_8$ ? (a changes, b is same)

- <u>**6b**</u>. C<sub>4</sub>H<sub>10</sub> (84.6g CO, 133g CO<sub>2</sub>); C<sub>4</sub>H<sub>8</sub> (87.6 lb CO, 138 lb CO<sub>2</sub>)
- $\underline{5a}$ . 234 mL (.70 g / 1 mL) = 164 g  $\underline{5b}$ . 164 g (1 mL / .70 g) = 234 mL
- 5c. (134 g/234 mL) = .701 g/mL



3a: (1 gal) (3785 mL/gal) (.70 g  $C_8H_{18}$  / mL  $C_8H_{18}$ ) (1 mol  $C_6H_{18}$  / 114 g  $C_8H_{18}$ ) (8 mol  $CO_2$  / 1 mol  $C_8H_{18}$ ) (44 g  $CO_2$  / 1 mol  $CO_2$ ) (1 lb / 454 g)

ENERGY BALANCES: changed by enhanced greenhouse effect? incoming E = outgoing E is needed for steady state with constant temperature; transient-radiation (100 = 6 + 25 + 46 + 23) and ultimate-radiation (100 = 6 + 25 + 60 + 9), atmosphere (23 + 37 = 60), earth (46 = 37 + 9). Figure 3.2 is simplified, so it doesn't show some complex interactions; for example, "much of this heat is redirected and comes back..." (CiC, pg 103) Sun's EM radiation (UV, visible, infrared) differs (re: transmission, reflection, absorption, emission) as explained in CiC, shown by yellow, blue, red.

